Welcome to my blog :)

rss

jueves, 8 de julio de 2010

Proyecto:



Nuestro proyecto que vamos a fabricar va ser de una maqueta que tenga un pozo con palancas y cosas mas complejas, también vamos hacer un auto para niñas que tendrá un tipo de piñón-cremallera y algo mas complejo.

Proyecto:

Ruedas de fricción



Este mecanistmo de transmisión circular consiste en dos o más ruedas que se tocan entre sí montadas sobre ejes paralelos, de modo que, mediante la fuerza que produce el rozamiento entre ambas, es posible transmitir el movimiento giratorio entre los ejes, modificando, no sólo las características de velocidad, sino también el sentido de giro.

Este sistema tiene un inconveniente, solamente se puede usar cuando se transmiten pequeñas potencias, pues, por deslizamiento existe una pérdida de velocidad. Además, el uso continuo lleva al desgaste de las ruedas, a pesar de que las ruedas están revestidas de un material especial.Sin embargo, presenta dos claras ventajas. Por una parte el bajo coste que supone la fabricación del mecanismo y, por otro lado, es un mecanismo que ocupa poco espacio, al contrario que el sistema de poleas con correa.

La relación de transmisión toma la misma forma que para el sistema de poleas con correa, es decir,
n1·d1 = n2·d2

siendo…

n1 = velocidad de la rueda motriz.
n2 = velocidad de la rueda conducida

d1 = diámetro de la rueda motriz (entrada).
d2 = diámetro de la rueda conducida (salida).

de modo que, como en el caso del sistemas de poleas con correa, podemos encontrar sistemas reductores o multiplicadores de velocidad según el tamaño relativo entre las ruedas.

Aplicaciones: Es muy común en equipos de sonido y vídeo, pues las ruedas de fricción facilitan el avance de la cinta. También es común en impresoras para facilitar el avance del papel.



Mecanismo de tornillo-tuerca

El mecanismo tornillo-tuerca, conocido también como husillo-tuerca es un mecanismo de transformación de circular a lineal compuesto por una tuerca alojada en un eje roscado (tornillo).

Si el tornillo gira y se mantiene fija lo orientación de la tuerca, el tornillo avanza con movimiento rectilíneo dentro de ella.

Por otra parte, si se hace girar la tuerca, manteniendo fija la orientación del tornillo, aquella avanzará por fuera de ésta. Este mecanismo es muy común en nuestro entorno, pues lo podemos encontrar en infinidad de máquinas y artilugios.

Evidentemente, este mecanismo es irreversible, es decir, no se puede convertir el movimiento lineal de ninguno de los elementos en circular.

El avance depende depende de dos factores:

La velocidad de giro del elemento motriz.

El paso de la rosca del tornillo, es decir, la distancia que existe entre dos crestas de la rosca del tornillo. Cuando mayor sea el paso, mayor será la velocidad de avance.

Veamos algunos instrumentos que incorporan este mecanismo:













El sargento: Esta herramienta de sujeción de piezas que se van a mecanizar, muy común en cualquier aula de tecnología, tiene este mecanismo como elemento esencial. En este caso, el elemento motriz es el tornillo que, al girarlo manualmente, avanza dentro de la tuerca que posee el brazo de la corredera.

La bigotera: Este instrumento, muy común en las clases de plástica, regula la abertura de sus brazos gracias al giro de un tornillo que mantiene su posición y que actúa como elemento motriz. Las tuercas se encuentran en los brazos del compás, las cuales avanzan dentro del tornillo.


El gato mecánico: En este caso, al girar la manivela, gira la tuerca, que actúa como elemento motriz y, a la vez, avanza por el tornillo linealmente de forma que se cierran las barras articuladas que levantan el automóvil.




El grifo de rosca: El elemento es el mando giratorio del grifo, acoplado a un tornillo (elemento motriz) que avanza linealmente y gira dentro de una tuerca. En el extremo del tornillo hay una zapata de caucho que termina cerrando el paso al agua.
El cigüeñal
El cigüeñal es un árbol de transmisión que junto con las bielas transforma el movimiento alternativo en circular, o viceversa. En realidad consiste en un conjunto de manivelas. Cada manivela consta de una parte llamada muñequilla y dos brazos que acaban en el eje giratorio del cigüeñal. Cada muñequilla se une una biela, la cual a su vez está unida por el otro extremo a un pistón. Observa la imagen y lo entenderás inmediatamente…




Los cigüeñales se utilizan extensamente en los motores de combustión de los automóviles, donde el movimiento lineal de los pistones dentro de los cilindros se trasmite a las bielas y se transforma en un movimiento rotatorio del cigüeñal que, a su vez, se transmite a las ruedas y otros elementos como un volante de inercia. El cigüeñal es un elemento estructural del motor.
Biela Manivela


Este mecanismo transforma el movimiento circular de la manivela en un movimiento alternativo del


Conjunto cigüeñal, biela y pistón
pie de una biela, que es una barra rígida, cuyo extremo está articulado y unido a la manivela. Este sistema también funciona a la inversa, es decir, transforma el movimiento alternativo de la biela en un movimiento de rotación de la manivela. Este mecanismo es esencial, pues se utiliza en motores de combustión interna, máquinas de vapor, máquinas de coser, herramientas mecánicas, etc. En el caso de los motores de los coches, la manivela es sustituida por el cigüeñal, que arrastra los pistones del motor a través de las bielas.
Piñón-cremallera

Mecanismo de piñón-cremallera
Este mecanismo convierte el movimiento circular de un piñón en uno lineal continuo por parte de la cremallera, que no es más que una barra rígida dentada . Este mecanismo es reversible, es decir, el movimiento rectilíneo de la cremallera se puede convertir en un movimiento circular por parte del piñón. En el primer caso, el piñón al girar y estar engranado a la cremallera, empuja a ésta, provocando su desplazamiento lineal.


Mecanismo de piñón cremallera
Aunque el sistema es perfectamente reversible, su utilidad práctica suele centrarse solamente en la conversión de circular en lineal continuo, siendo muy apreciado para conseguir movimientos lineales de precisión (caso de microscopios u otros instrumentos ópticos como retroproyectores), desplazamiento del cabezal de los taladros sensitivos, movimiento de puertas automáticas de garaje, sacacorchos, regulación de altura de los trípodes, movimiento de estanterías móviles empleadas en archivos, farmacias o bibliotecas, cerraduras..


Cómo se puede observar en el anterior vídeo, podemos resumir que…

Tipo de mecanismo: Transformación circular a lineal
Elemento motriz: Piñón, que describe un movimiento circular.
Elemento conducido: Cremallera, que describe un movimiento lineal.

Dirección asistida - Haz clic en el dibujo para ver detalles

Detalle del piñón-cremallera de la dirección asistida
En el siguiente vídeo podrás observar una de sus más extendidas aplicaciones: La dirección asistida. El conjunto de mecanismos que componen el sistema de la dirección tienen la misión de orientar las ruedas delanteras para que el vehículo tome la trayectoria deseada por el conductor. Cuando giras el volante de un automóvil, giras al mismo tiempo un piñón situado en el otro extremo del eje del volante. Este, a su vez, engrana a una cremallera que, al desplazarse, permite el giro de las ruedas que te permiten cambiar la dirección del coche…pero mejor es que observes el vídeo y así comprobarás su funcionamiento.

transformación del movimiento circular

Mecanismos de transformación del movimiento
En estos mecanismos, el tipo de movimiento que tiene el elemento de entrada del mecanismo es diferente del tipo de movimiento que tenga el elemento de salida, es decir, el tipo de movimiento se transforma en otro distinto, de ahí el nombre de mecanismo de transformación.

Los mecanismos de transformación puede ser, a su vez, agrupados en dos grandes grupos:

Mecanismos de transformación circular-lineal: En este caso, el elemento de entrada tiene movimiento circular, mientras que el elemento de salida tiene movimiento lineal. Ejemplo: El mecanismo piñón-cremallera.
Mecanismos de transformación circular-alternativo: En este caso, el elemento de salida tiene movimiento circular, mientras que el elemento de salida tiene movimiento alternativo. Ejemplo: El mecanismo de biela-manivela.
Veamos algunos de ellos, de uno en uno,…

La leva
En mecánica, una leva es un elemento mecánico hecho de algún material (madera,metal, plástico, etc.) que va sujeto a un eje y tiene un contorno con forma especial. De este modo, el giro del eje hace que el perfil o contorno de la leva toque, mueva, empuje o conecte una pieza conocida como seguidor.

Permite obtener un movimiento alternativo, a partir de uno circular; pero no nos permite obtener el circular a partir de uno alternativo (o de uno oscilante). Es un mecanismo no reversible, es decir, el movimiento alternativo del seguidor no puede ser transformado en un movimiento circular para la leva. Si haces clic sobre el dibujo de la derecha, verás a la leva en acción.


En resumen:

Tipo de mecanismo: Transformación circular a alternativo.
Elemento motriz: Leva, que describe un movimiento circular.
Elemento conducido: Seguidor, que describe un movimiento alternativo.
Este mecanismo se emplea en: motores de automóviles (para la apertura y cierre de las válvulas), programadores de lavadoras (para la apertura y cierre de los circuitos que gobiernan su funcionamiento), carretes de pesca (mecanismo de avance-retroceso del carrete), cortapelos, depiladoras,


Se puede apreciar en la siguiente animación una válvula de un cilindro de un motor de combustión accionada por una leva




Tornillo sinfín y rueda dentada



El tornillo sinfin es un mecanismo de transmisión circular compuesto por dos elementos: el tornillo (sinfín), que actúa como elemento de entrada (o motriz) y la rueda dentada, que actúa como elemento de salida (o conducido) y que algunos autores llaman corona. La rosca del tornillo engrana con los dientes de la rueda de modo que los ejes de transmisión de ambos son perpendiculares entre sí.

El funcionamiento es muy simple: por cada vuelta del tornillo, el engranaje gira un solo diente o lo que es lo mismo, para que la rueda dé una vuelta completa, es necesario que el tornillo gire tantas veces como dientes tiene el engranaje. Se puede deducir de todo ello que el sistema posee una relación de transmisión muy baja, o lo que es lo mismo, es un excelente reductor de velocidad y, por lo tanto, posee elevada ganancia mecánica. Además de esto, posee otra gran ventaja, y es el reducido espacio que ocupa.

El tornillo es considerado una rueda dentada con un solo diente que ha sido tallado helicoidalmente (en forma de hélice). A partir de esta idea, se puede deducir la expresión que calcula la relación de transmisión:



donde Z representa el número de dientes del engranaje.

Veamos un ejemplo: supongamos que la rueda tiene 60 dientes. En este caso, el tornillo debe dar 60 vueltas para el engranaje complete una sola vuelta y, por lo tanto, la relación de transmisión del mecanismo es



Este mecanismo no es reversible, es decir, la rueda no puede mover el tornillo porque se bloquea.

Aplicaciones:


El tornillo sinfín en las clavijas de una guitarra
En nuestra vida cotidiana lo podemos ver claramente en las clavijas de una guitarra. En este caso, la cuerda es recogida con presición por eje de transmisión de una pequeña rueda dentada que es conducida por un tornillo que gira gracias a la acción de la clavija.


No podemos olvidar el limpiaparabrisas, que se acciona gracias a este mecanismo.

Tren de engranajes

Un tren de engranajes consiste en la combinación de más de un par de engranajes. Es un sistema de transmisión circular muy común con múltiples y variadas aplicaciones. Un ejemplo significativo es la caja de cambios de un automóvil, compuesto por varios trenes de engranajes.¿por qué se usan trenes?

Obtención de una relación de transmisión i, imposible de conseguir con un solo par de ruedas
Obtención de una amplia gama de i en un mismo mecanismo
Por motivos de espacio, debido a la necesidad de transmitir el movimiento entre ejes alejados
Si se necesita cambiar la situación, orientación o sentido del movimiento del eje de salida
Si se desea transmitir el movimiento de un eje a otros simultáneamente
En el siguiente vídeo puedes observar un tren de engranajes compuesto por cuatro ejes (o árboles).
2. Sistema multiplicador de velocidad: En este caso, la velocidad de la polea conducida es mayor que la velocidad de la polea motriz. Esto se debe a que la polea conducida es menor que la polea motriz.

La velocidad de las ruedas se mide normalmente en revoluciones por minuto (rpm) o vueltas por minuto.

Los sistemas de poleas con correa presentan una serie de ventajas que hacen que hoy en día sean de uso habitual. Veamos algunas de ellas:

Posibilidad de transmitir un movimiento circular entre dos ejes situados a grandes distancias entre sí.
Funcionamiento suave y silencioso.
Diseño sencillo y costo de fabricación bajo.
Si el mecanismo se atasca la correa puede desprenderse y, de este modo, se para. Este efecto contribuye a la seguridad probada de muchas máquinas que emplean este mecanismo como pueden ser taladros industriales.
Sin embargo, también este sistema presenta algunos inconvenientes:

La primera de las ventajas puede ser una desventaja, es decir, este mecanismo ocupa demasiado espacio.
La correa puede patinar si la velocidad es muy alta con lo cual no se garantiza una transmisión efectiva.
La potencia que se puede transmitir es limitada.
Aplicaciones: Este mecanismo es esencial en los motores de los automóviles, pues la transmisión circular entre diferentes ejes de los mismos se hacen con correas. Hemos oído hablar multitud de veces de la correa de transmisión (o de distribución) del coche. Pues bien, es esencial para el funcionamiento del ventilador de refrigeración, el alternador,…

Definición: Definimos la relación de transmisión (i) como la relación que existe entre la velocidad de la polea salida (n2) y la velocidad de la polea de entrada (n1).

i = n2/ n1
expresión que es válida para todos los sistemas de transmisión circular que veremos en adelante.

La relación de transmisión, como su nombre indica, es una relación de dos cifras, no una división.
Ejemplo 1 : Supongamos un sistema reductor de modo que:
n1 = velocidad de la polea motriz (entrada) es de 400 rpm.
n2 = velocidad de la polea conducida (salida) es de 100 rpm.
En este caso, la relación de transmisión es:

i = n2/ n1 = 100/400 = ¼ (tras simplificar)

Una relación de transmisión 1:4 significa que la velocidad de la rueda de salida es cuatro veces menor que la de entrada.

Ejemplo 2 : Supongamos un sistema multiplicador de modo que:

n1 = velocidad de la polea motriz (entrada) es de 100 rpm.
n2 = velocidad de la polea conducida (salida) es de 500 rpm.

En este caso, la relación de transmisión es:

i = n2/ n1 = 500/100 = 5/1 (tras simplificar)

Una relación de transmisión 5:1 significa que la velocidad de la rueda de salida es cinco veces mayor que la de entrada. Nota que la relación es 5/1 y no 5, pues ambos número nunca debendividirse entre sí (todo lo más simplificarse).

La relación de transmisión también se puede calcular teniendo en cuenta el tamaño o diámetrode las poleas.

i = d1/ d2

donde

d1 = diámetro de la polea motriz (entrada).
d2 = diámetro de la polea conducida (salida).

Se puede calcular las velocidad de las poleas a partir de los tamaños de las mismas

n1·d1 = n2·d2
expresión que también se puede colocar como…

n2/n1 = d1/d2
Ejemplo:
Tengo un sistema de poleas de modo que:
La polea de salida tiene 40 cm de diámetro y la de entrada 2 cm de diámetro. Si la polea de entrada gira a 200 rpm
a) Halla la relación de transmisión
b) Halla la velocidad de la polea de salida
c) ¿Es un reductor o un multiplicador?

Datos:

n1 = velocidad de la polea entrada) es de 200 rpm.
n2 = velocidad de la polea salida es la incógnita
d1 = diámetro de la polea entrada es 2 cm
d2 = diámetro de la polea salida es 40 cm

a) i = d1/ d2 = 2/40 = 1/20

b) n1·d1 = n2·d2  200 rpm·2 cm = n2·40 cm
n2 = (200·2)/40 = 400/40 = 10 rpm

c) Es un reductor porque la velocidad de la polea de
salida es menor que la velocidad de la polea de
entrada (n2 < n1).
Con la correa cruzada se puede lograr que el sentido de giro de la polea conducida sea contrario al de la polea motriz.

Sistema simple de poleas con correa

El sistema de poleas con correa más simple consiste en dos poleas situadas a cierta distancia, que giran a la vez por efecto del rozamiento de una correa con ambas poleas. Las correas suelen ser cintas de cuero flexibles y resistentes. Es este un sistema de transmisión circular puesto que ambas poleas poseen movimiento circular.

En base a esta definición distinguimos claramente los siguientes elementos:


Sistema de poleas con correa
1. La polea motriz: también llamada polea conductora: Es la polea ajustada al eje que tiene movimiento propio, causado por un motor, manivela,

… En definitiva, este eje conductor posee el movimiento que deseamos transmitir.

2. Polea conducida: Es la polea ajustada al eje que tenemos que mover. Así, por ejemplo: en una lavadora este eje será aquel ajustado al tambor que contiene la ropa.

3. La correa de transmisión: Es una cinta o tira cerrada de cuero, caucho u otro material flexible que permite la transmisión del movimiento entre ambas poleas. La correa debe mantenerse lo suficientemente tensa pues, de otro modo, no cumpliría su cometido satisfactoriamente.

Según el tamaño de las poleas tenemos dos tipos:
1. Sistema reductor de velocidad: En este caso, la velocidad de la polea conducida ( o de salida) es menor que la velocidad de la polea motriz (o de salida). Esto se debe a que la polea conducida es mayor que la polea motriz.
siendo n el número de poleas fijas del polipasto. Así, por ejemplo, si disponemos de un polipasto de tres poleas móviles, el esfuerzo que debo realizar para elevar una carga es seis veces menor (2n = 2·3 =6). Suponiendo que la carga sea, por poner un ejemplo, de 60 kg… el esfuerzo que deberíamos efectuar en este caso es de 10 kg.

Otro modelo de polipasto es aquel que emplea dos ramales distintos paralelos y a distinta altura en los que se alojan las poleas. En el ramal superior se sitúan las poleas fijas y en el de abajo las poleas móviles, conjuntamente con la carga.

Por último, es importante señalar que en este tipo de sistema, al igual que la polea móvil, debemos hacer un mayor recorrido con la cuerda; mayor recorrido cuanto mayor es el número de poleas.

Veamos por último un corto vídeo que nos ilustra algunos de los aspectos ya explicados.
b) Polea móvil: Es un conjunto de dos poleas, una de las cuales es fija, mientras que la otra es móvil. La polea móvil dispone de un sistema armadura-gancho que le permite arrastrar la carga consigo al tirar de la cuerda. La principal ventaja de este sistema de poleas es que el esfuerzo que se emplea para elevar la carga representa la mitad del que haría si emplease una polea fija. Así, por ejemplo, si quisiera elevar una carga de 40 kg de peso, basta con ejercer una fuerza de tan sólo 20 kg.

Esto supone que la cuerda que emplee para este mecanismo pueden ser la mitad de resistentes que en el caso anterior. Sin embargo, presenta una desventaja: El recorrido que debe hacer la cuerda para elevar la carga una altura determinada (h) debe ser el doble de la altura buscada (2h).

Aunque consta de dos poleas, en realidad se puede construir este mecanismo con una sola polea (observa la imagen de la derecha). Para ello se debe fijar un extremo de la cuerda, la carga a la polea y tirar de la cuerda de forma ascendente. Precisamente, este es la desventaja, mientras que en el caso de emplear dos poleas, este problema desaparece.

c) Sistemas de poleas compuestas: Existen sistemas con múltiples de poleas que pretenden obtener una gran ventaja mecánica, es decir, elevar grandes pesos con un bajo esfuerzo. Estos sistemas de poleas son diversos, aunque tienen algo en común, en cualquier caso se agrupan en grupos de poleas fijas y móviles: destacan los polipastos:

Polipasto: Este mecanismo está formado por grupos de poleas fijas y móviles, cada uno de ellos formado a su vez por un conjunto de


Polipasto
poleas de diámetro decreciente y ejes paralelos entre sí que se montan sobre la misma armadura, de modo que existe el mismo número de poleas fijas que móviles.

El extremo de la cuerda se sujeta al gancho de la armadura fija y se pasa alternativamente por las ranuras de las poleas —de menor a mayor diámetro en el caso del polispasto— comenzando por la del grupo móvil y terminando en la polea fija mayor o extrema donde quedará libre el tramo de cuerda del que se tira. La expresión que nos indica el esfuerzo que se debe realizar para vencer una carga (o resistencia) es las siguiente:

Transmición del movimiento lineal

En este caso, el tipo de movimiento que tiene el elemento de entrada del mecanismo (elemento motriz) coincide con el tipo de movimiento que tiene el elemento de salida (elemento conducido).

Los mecanismos de transmisión pueden ser, a su vez, agrupados en dos grandes grupos:

Mecanismos de transmisión circular: En este caso, el elemento de entrada y el elemento de salida tienen movimiento circular. Ejemplo: Los sistemas de engranajes.
Mecanismos de transmisión lineal: En este caso, el elemento de entrada y el elemento de salida tienen movimiento lineal. Ejemplo: La palanca.
Sistemas de poleas
Una polea es una rueda que tiene un ranura o acanaladura en su periferia, que gira alrededor de un eje que pasa por su centro. Esta ranura sirve para que, a través de ella, pase una cuerda que permite vencer una carga o resistencia R, atada a uno de sus extremos, ejerciendo una potencia o fuerza F, en el otro extremo. De este modo podemos elevar pesos de forma cómoda e, incluso, con menor esfuerzo, hasta cierta altura. Es un sistema de transmisión lineal puesto que resistencia y potencia poseen tal movimiento.

Podemos distinguir tres tipos básicos de poleas:

a) Polea fija: Como su nombre indica, consiste en una sola polea que está fija a algún lugar. Con ella no se gana en Fuerza, pero se emplea para cambiar el sentido de la fuerza haciendo más cómodo el levantamiento de cargas al tirar hacia abajo en vez de para arriba, entre otros motivos porque nos podemos ayudar de nuestro propio peso para efectuar el esfuerzo. La fuerza que tenemos que hacer es igual al peso que tenemos que levantar (no hay ventaja mecánica) F=R. Así, por ejemplo, si deseo elevar una carga de 40 kg de peso, debo ejercer una fuerza en el otro extremo de la cuerda de, igualmente, 40 kg.

jueves, 1 de julio de 2010

palancas